The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain

SMC Author

Joel Burley

SMC Affiliated Work

1

Status

Faculty

School

School of Science

Department

Chemistry

Document Type

Article

Publication Date

10-15-2015

Publication / Conference / Sponsorship

Science of the Total Environment

Description/Abstract

The Nevada Rural Ozone Initiative (NVROI) was established to better understand O3 concentrations in the Western United States (US). The major working hypothesis for development of the sampling network was that the sources of O3 to Nevada are regional and global. Within the framework of this overarching hypothesis, we specifically address two conceptual meteorological hypotheses: (1) The high elevation, complex terrain, and deep convective mixing that characterize Nevada, make this state ideally located to intercept polluted parcels of air transported into the US from the free troposphere; and (2) site specific terrain features will influence O3 concentrations observed at surface sites. Here, the impact of complex terrain and site location on observations are discussed. Data collected in Nevada at 6 sites (1385 to 2082 m above sea level (asl)) are compared with that collected at high elevation sites in Yosemite National Park and the White Mountains, California. Average daily maximum 1-hour concentrations of O3 during the first year of the NVROI ranged from 58 to 69 ppbv (spring), 53 to 62 ppbv (summer), 44 to 49 ppbv (fall), and 37 to 45 ppbv (winter). These were similar to those measured at 3 sites in Yosemite National Park (2022 to 3031 m asl), and at 4 sites in the White Mountains (1237 to 4342 m asl) (58 to 67 ppbv (summer) and 47 to 58 ppbv (fall)). Results show, that in complex terrain, collection of data should occur at high and low elevation sites to capture surface impacts, and site location with respect to topography should be considered. Additionally, concentrations measured are above the threshold reported for causing a reduction in growth and visible injury for plants (40 ppbv), and sustained exposure at high elevation locations in the Western USA may be detrimental for ecosystems.

Keywords

National Parks, Long range transport, Regional air pollution, Asian pollution

Lasallian research

yes

Scholarly

yes

DOI

10.1016/j.scitotenv.2015.03.046

Volume

530-531

First Page

455

Last Page

470

Disciplines

Chemistry

Rights

Open access

Original Citation

Joel Burley (Chemistry): “The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain,” by Gustin, M.S., Fine, R., Miller, M., Jaffe, D., Burley, J.,. Science of the Total Environment 530, pp. 455-470 (2015). https://doi.org/10.1016/j.scitotenv.2015.03.046

Share

COinS