Exopolysaccharide Microchannels Direct Bacterial Motility and Organize Multicellular Behavior

SMC Author

James Berleman

SMC Affiliated Work

1

Status

Faculty

School

School of Science

Department

Biology

Document Type

Article

Publication Date

5-6-2016

Publication / Conference / Sponsorship

ISME Journal

Description/Abstract

The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required for cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS- mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.

Scholarly

yes

DOI

10.1038/ismej.2016.60

Volume

10

Issue

11

First Page

2620

Last Page

2632

Disciplines

Biology

Rights

Open Access article

Comments

PMID: 27152937 [Epub ahead of print]

[Note: Sasha Worth and Zach West were SMC students]

Original Citation

James Berleman (Biology): “Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior,” by Berleman JE*, Zemla M, Remis JP, Liu H, Davis AE, Worth AN, West Z, Zhang A, Park H, Bosneaga E, van Leer B, Tsai W, Zusman DR, Auer M., in ISME J. 2016 May 6. PMID: 27152937. https://doi.org/10.1038/ismej.2016.60. [Epub ahead of print]. https://www.ncbi.nlm.nih.gov/pubmed/27152937

Share

COinS